Reg. No.:	اساريه		

Question Paper Code: 30573

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2024.

Fourth Semester

Electrical and Electronics Engineering

EE 8401 — ELECTRICAL MACHINES - II

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 × 2 = 20 marks)

- 1. Why is the field system of an alternator made as a rotor?
- 2. Define voltage regulation.
- 3. Define hunting in a synchronous motor.
- 4. List the starting methods of synchronous motor.
- 5. A 3-phase induction motor is wound for 4 poles and is supplied from 50 Hz system. Calculate the speed at which the magnetic field of the stator is rotating.
- 6. What is cogging in an induction motor?
- 7. Illustrate the advantages and disadvantages of V/F speed control of an induction motor.
- 8. Compare Plugging, Dynamic braking and Regenerative braking.
- 9. How can the direction of a capacitor-start motor can be reversed?
- 10. State the principle of operation of a linear induction motor.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Describe how the direct and quadrature-axis reactances of a salient-pole synchronous machine can be estimated by means of slip test.

Or

- (b) Explain the principle and construction of synchronous generator with neat diagram. Derive its emf equation.
- 12. (a) Explain briefly the constructional features and principle of operation of three-phase synchronous motor.

Or

- (b) A 6600V, 3 phase, star connected synchronous motor draws a full load current of 80 A at 0.8 pf leading. The armature resistance is 2.2 Ω and reactance of 22 Ω per phase. If the stray losses of the machine are 3200W. Find
 - (i) Emf induced (5)
 - (ii) Output power (4)
 - (iii) Efficiency of the machine. (4)
- 13. (a) Explain the torque slip characteristics of 3 phase cage and slip-ring induction motors. Show the stable region in the graph.

Or

- (b) Discuss the different power stages of an induction motor with losses.
- 14. (a) Summarize the different types of braking of three phase induction motor.

Or

- (b) The rotor resistance per phase of a 3-phas, 60 kW induction motor is 0.020W. Design a starter for this induction motor having six notches, where the upper current limit has to be the full load current so that the slip is 2.5%.
- 15. (a) Using double field revolving theory, compose why a single phase induction motor is not self-starting. Also obtain the equivalent circuit of single phase induction motor with necessary equations.

Or

- (b) Discuss the construction operation and characteristics of the following:
 - (i) Repulsion motor. (7)
 (ii) Servo motor. (6)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) A 3 phase 50 Hz, 12 pole, 200 kW slip-ring induction motor drives a fan whose torque is proportional to the square of speed. At full load, the motor slip is 0.045. The rotor resistance measured between any two slip-rings is 61 m Ω . Invent what resistance should be added in the rotor circuit to reduce the fan speed to 450 rpm?

Or

(b) A 220 V, single phase induction motor gave the following test results: Blocked rotor test: 120 V, 9.6 A, 460 W; No-load test: 220 V, 4.6 A, 125 W. The Stator winding resistance is 1.5 Ω and during the blocked rotor test, the starting winding is open. Prepare the Equivalent circuit parameters, core, friction and windage losses.